Introduction
This document describes the use of Public Cloud Edge Interface (PCEI) implemented based on Edge Multi-Cluster Orchestrator (EMCO) for deployment of Public Cloud Edge (PCE) Apps from multiple clouds (Azure and AWS), deployment of a 3rd-Party Edge (3PE) App (an implementation of ETSI MEC Location API App), as well as the end-to-end operation of the deployed PCE Apps using simulated Low Power Wide Area (LPWA) IoT client.
Functional Roles
Developers
Individuals/entities that:
- Create the PCE/3PE Apps
- Provision services in Public Clouds (PCC)
- Note that valid Public Cloud subscriptions/accounts are required
- Package PCE/3PE Apps using Helm Charts
- Access PCEI/EMCO Orchestrator using UI or APIs to onboard PCE/3PE services/apps
- PCEI R4 supports UI access only
Operators
Entities that:
- Provide network functions and services such as:
- Access (mobile or fixed)
- Network connectivity
- Devices (e.g. LPWA IoT)
- Access PCEI/EMCO Orchestrator using UI or APIs to deploy PCE/3PE apps
- Connecto to Edge Providers/Clusters and Public Clouds using Public Internet or Private Interconnect
- PCEI R4 supports Public Internet connectivity only
Edge Providers
Entities that:
- Provide edge infrastructure, such as:
- Edge Data Centers
- Edge Compute/Network/Storage hardware
- Edge Virtualization layer/software, such as Kubernetes, Openstack
- PCEI R4 supports Kubernetes only
- Provide Public Peering and Private Interconnection
- Between Operators and Edge Providers
- Between Operators and Public Clouds
- Between Edge Providers and Public Clouds
Public Cloud Providers
Entities that:
- Provide Iaas/SaaS services
PCEI Enabler
- Orchestration Software and APIs
- May be provided by:
- Operators
- Edge Providers
- Public Cloud Providers
End-to-End Validation Environment
The end-to-end validation environment and flow of steps is shown below:
Description of components of the end-to-end validation environmen:
- EMCO - Edge Multi-Cloud Orchestrator. PCEI Enabler functions are based on EMCO implementation. EMCO is deployed in the K8S cluster.
- Edge K8S Clusters - Kubernetes clusters on which PCE Apps (Azure IoT Edge, AWS GGC), 3PE App (ETSI Location API Handler) are deployed.
- Public Cloud - IaaS/SaaS (Azure, AWS).
- PCE - Public Cloud Edge App (Azure IoT Edge, AWS GGC)
- 3PE - 3rd-Party Edge App (PCEI Location API App)
- Private Interconnect / Internet - Networkin between IoT Device/Client and PCE/3PE as well as connectivity between PCE and PCC.
- IoT Device - Simulated Low Power Wide Area (LPWA) IoT Client.
- IP Network/vEPC/UPF) - Network providing connectivity between IoT Device and PCE/3PE. Note that in this validation the vEPC (virtual Evolved Packet Core) /UPF (User Plane Function) are not used.
- MNO DC - Mobile Network Operator Data Center. Not used in the validation.
- Edge DC - Edge Data Center. Equinix DC used in this validation.
- Core DC - Public Cloud.
- Developer - an individual/entity providing PCE/3PE App.
- Operator - an individual/entity operating PCEI functions.
Note that P1, P3, P5/P7 Reference Points are shown to illustrate alignment with general PCEI architecture.
The end-to-end PCEI validation steps are described below:
- Deploy EMCO.
- Deploy Edge K8S clusters
- Onboard Edge K8S clusters onto EMCO
- Provision Public Cloud Core Service and PCE software.
- Package PCE/3PE Helm Charts into EMCO
- Onboard PCE/3PE as a service/application into EMCO
- Deploy PCE/3PE onto the Edge K8S clusters
- All PCE pods came up and register with PCC. All 3PE pods come up.
- Deploy software onto PCE on the worker cluster
- Successfully pass LPWA IoT messages from a simulated IoT device to PCE, decode messages and send to PCC.
For performing Steps 1 and 2 please refer to the PCEI R4 Installation Guide.
Provisioning PCEI Orchestration Infrastructure (EMCO)
Please refer to the PCEI R4 Installation Guide to deploy EMCO and Edge K8S Clusters.
Access EMCO UI via a Web Browser as shown in the diagram below (all IP addresses shown are used as examples):
In order to be able to access the EMCO cluster and the Edge K8S cluster via ssh directly from a laptop as shown in the diagram above, please copy the ssh key used in the PCEI Installation to you local machine:
### copy id_rsa key from deployment host to be able to ssh to eco and cluster vm’s sftp onaplab@10.121.1.12 get ~/.ssh/id_rsa pcei-emco ### ssh to VMs ssh -i pcei-emco onaplab@10.121.7.145
Accessing EMCO UI
Connect to the VNC server, start the Browser (Chrome) and point it to the EMCO VM (amcop-vm-01) IP address and port 30480:
http://10.121.7.145:30480
You should be able to connect to EMCO UI as shown below:
Provisioning Network Controllers
The following Network Controllers must be provisioned in EMCO:
### Add controllers rsync: host : rsync port: 9041 type: < leave blank, not required.> priority: < leave blank, not required> ovnaction: host: ovnaction port: 9053 type: action priority: 1
To provision Network Controllers, please use the parameters shown above and EMCO UI "Controllers → Register Controllers" tab:
Fill in the parameters for the "rsync" and the "ovnaction" controllers:
Registering Edge Clusters
To register the two Edge K8S Clusters created during PCEI installation (refer to PCEI R4 Installation Guide), the cluster configuration files need to be copied from the corresponding VMs to the machine that is used to access EMCO UI. Please make sure that the ssh key used to access the VMs is present on the machine that where the cluster config files are being copied to. The example below assumes that the cluster config files are copied to the Host Server used to deploy EMCO and Edge Cluster VMs. Alternatively, the ssh key and the config files could be copied to a laptop.
# Determine VM IP addresses: [onaplab@os12 ~]$ sudo virsh list --all Id Name State ---------------------------------------------------- 6 amcop-vm-01 running 9 edge_k8s-1 running 10 edge_k8s-2 running [onaplab@os12 ~]$ sudo virsh domifaddr edge_k8s-1 Name MAC address Protocol Address ------------------------------------------------------------------------------- vnet1 52:54:00:19:96:72 ipv4 10.121.7.152/27 [onaplab@os12 ~]$ sudo virsh domifaddr edge_k8s-2 Name MAC address Protocol Address ------------------------------------------------------------------------------- vnet2 52:54:00:c0:47:8b ipv4 10.121.7.146/27 sftp -i pcei-emco onaplab@10.121.7.146 cd .kube get config kube-config-edge-k8s-2 sftp -i pcei-emco onaplab@10.121.7.152 cd .kube get config kube-config-edge-k8s-1
Using EMCO UI "Cluster → Register Cluster Provider" tabs, provision Cluster Providers for EDGE-K8S-1 and EDGE-K8S-2 clusters:
Click on the Cluster Provider and click on "Add Cluster". Fill in the Cluster Name and add the config file downloaded earlier. Repeat for the two clusters EDGE-K8S-1 and EDGE-K8S-2:
You should see the following result:
At this point the edge clusters have been registered with the orchestrator and are redy for placing PCE and 3PE apps.
Deploying Azure IoT Edge with PCEI
Overall Deployment Summary
The deployment of Azure IoT Edge cloud native application as a PCE involves the following steps:
- Provision Azure Cloud (PCC).
- Provision IoT Hub.
- Provision Azure Container Registry.
- Enable custom software module for Azure IoT Hub (optional). This step is used to show end-to-end operation of Azure IoT Edge with a simulated LPWA IoT device.
- Install Visual Studio Code IDE.
- Add LoRaEdgeSolution code.
- Build and push the LoRaRead custom module to Azure Container Registry.
- Package Azure IoT Edge cloud native application.
- Download Helm charts.
- Modify values.yaml with IoT Edge authentication parameters.
- Package Helm charts into a tar file.
- Define Azure IoT Edge Service and PCE App in EMCO.
- Deploy Azure IoT Edge onto Edge K8S Cluster using EMCO.
- Verify IoT end-to-end IoT operation.
- Connect LPWA IoT device and pass encoded IoT messages to Azure IoT Edge.
- Decode LPWA messages using custom LoRaRead module.
- Pass decoded messaged to Azure Cloud.
Provisioning Azure Public Cloud Core (PCC) IoT Environment
Provisioning Azure Public Cloud Core
Login to your Azure Portal and add Subscription, IoT Hub and Container Registry Resources:
Provision IoT Hub:
Provision IoT Edge under IoT Hub:
Copy the "Primary Connection String" from the IoT Edge parameters. This string will be used later in the values.yaml file for the Azure IoT Edge Helm Charts.
Enabling Azure IoT Edge Custom Module
Use this link for information on developing custom software modules for Azure IoT Edge:
The example below is optional. It shows how to build a custom module for Azure IoT Edge to read and decode Low Power IoT messages from a simulated LPWA IoT device. Follow the above link to:
- Install Docker.
- Download and install Visual Studio Code (VSC).
- Setup VSC with Azure IoT Tools.
- Setup Azure Container Registry in Azure Cloud.
- Create Module Project. For this step, please refer to instructions below on downloading the LoRaEdgeSolution from PCEI repo.
- Build and push solution to Azure Container Registry.
The steps below show how to build custom IoT module for Azure IoT Edge using "LoRaEdgeSolution" code from PCEI repo:
Download PCEI repo to the machine that has VSC and Docker installed (per above instructions):
git clone "https://gerrit.akraino.org/r/pcei" cd pcei ls -l total 0 drwxr-xr-x 8 oberzin staff 256 Dec 24 15:44 LoRaEdgeSolution drwxr-xr-x 3 oberzin staff 96 Dec 24 15:44 iotclient drwxr-xr-x 5 oberzin staff 160 Dec 24 15:44 locationAPI
Using VSC open the LoRaEdgeSolution folder that was downloaded from PCEI repo.
Add required credentials for Azure Container Registry (ACR) using .env file.
Build and push the solution to ACR as shown below. Righ-click on "deployment.template.json":
The docker image for the custom module should now be visible in Azure Cloud ACR:
Packaging Azure IoT Edge Public Cloud Edge (PCE) Application
Use this link to understand the architecture of Azure IoT Edge cloud native application:
https://microsoft.github.io/iotedge-k8s-doc/architecture.html
A local laptop can be used to package Helm charts for Azure IoT Edge. Alternatively the Host Server itself can be used to package the Helm charts for Azure IoT Edge.
Clone Azure IoT Edge from github:
git clone https://github.com/Azure/iotedge cd iotedge/kubernetes/charts/ mkdir azureiotedge1 cp -a edge-kubernetes/. azureiotedge1/ cd azureiotedge1 ls -al total 24 drwxrwxr-x. 3 onaplab onaplab 79 Dec 24 13:14 . drwxrwxr-x. 5 onaplab onaplab 77 Dec 24 13:14 .. -rw-rw-r--. 1 onaplab onaplab 137 Dec 24 13:02 Chart.yaml -rw-rw-r--. 1 onaplab onaplab 333 Dec 24 13:02 .helmignore drwxrwxr-x. 2 onaplab onaplab 220 Dec 24 13:02 templates -rw-rw-r--. 1 onaplab onaplab 14226 Dec 24 13:02 values.yaml
Modify values.yaml file to specify the "Primary Connection String" from Azure Cloud generated during IoT Hub/IoT Edge provisioning.
Modify values.yaml to set the LoadBalancer port mapping for iotedged and edgeAgent pods
vi values.yaml # Change the line below and save the file provisioning: source: "manual" deviceConnectionString: "PASTE PRIMARY CONNECTION STRING FROM AZURE IOT HUB / IOT EDGE SCREEN" dynamicReprovisioning: false # Set LoadBalancer port mapping service: name: iotedged type: LoadBalancer edgeAgent: containerName: edgeagent image: repository: azureiotedge/azureiotedge-agent tag: 0.1.0-beta9 pullPolicy: Always hostname: "localhost" env: authScheme: 'sasToken' # Set this to one of "LoadBalancer", "NodePort", or "ClusterIP" to tell the # IoT Edge runtime how you want to expose mapped ports as Services. portMappingServiceType: 'LoadBalancer'
Create a tar file with Azure IoT Edge Helm Charts:
# Make sure to change to the "charts" directory cd .. pwd /home/onaplab/iotedge/kubernetes/charts # zip the "azureiotedge1" directory. Be sure to use "azureiotedge1.zip" file name. tar -czvf azureiotedge1.tar azureiotedge1/ azureiotedge1/ azureiotedge1/.helmignore azureiotedge1/Chart.yaml azureiotedge1/templates/ azureiotedge1/templates/NOTES.txt azureiotedge1/templates/_helpers.tpl azureiotedge1/templates/edge-rbac.yaml azureiotedge1/templates/iotedged-config-secret.yaml azureiotedge1/templates/iotedged-deployment.yaml azureiotedge1/templates/iotedged-proxy-config.yaml azureiotedge1/templates/iotedged-pvc.yaml azureiotedge1/templates/iotedged-service.yaml azureiotedge1/values.yaml ls -al total 12 drwxrwxr-x. 5 onaplab onaplab 102 Dec 24 13:23 . drwxrwxr-x. 4 onaplab onaplab 31 Dec 24 13:02 .. drwxrwxr-x. 3 onaplab onaplab 79 Dec 24 13:14 azureiotedge1 -rw-rw-r--. 1 onaplab onaplab 8790 Dec 24 13:23 azureiotedge1.tar drwxrwxr-x. 3 onaplab onaplab 79 Dec 24 13:14 edge-kubernetes drwxrwxr-x. 3 onaplab onaplab 60 Dec 24 13:02 edge-kubernetes-crd
Copy the infrastructure profile tar file to your home directory from the Host Server. If using a local laptop, copy this file from the Host Server. This file is needed to define the Service and the App in EMCO:
cd cp /home/onaplab/amcop_deploy/aarna-stream/cnf/vfw_helm/profile.tar.gz . la -l ls -l total 220088 drwxrwxr-x. 9 onaplab onaplab 138 Nov 24 06:53 aarna-stream drwxrwxr-x. 3 onaplab onaplab 56 Nov 24 06:52 amcop_deploy -rw-r--r--. 1 onaplab onaplab 225356880 Nov 23 14:58 amcop_install_v1.0.zip drwxrwxr-x. 22 onaplab onaplab 4096 Dec 24 13:02 iotedge -rw-rw-r--. 1 onaplab onaplab 263 Nov 23 17:13 netdefault.xml -rw-rw-r--. 1 onaplab onaplab 1098 Dec 26 12:19 profile.tar.gz
Add Azure CRD to Edge K8S Cluster
Due to limitations in the current EMCO implementation the following step must be performed manually:
SSH to EDGE-K8S-1 VM:
# Determine VMs IP [onaplab@os12 ~]$ sudo virsh domifaddr edge_k8s-1 Name MAC address Protocol Address ------------------------------------------------------------------------------- vnet1 52:54:00:19:96:72 ipv4 10.121.7.152/27 # ssh from your laptop ssh -i pcei-emco onaplab@10.121.7.152
Deploy Azure CRD:
helm install edge-crd --repo https://edgek8s.blob.core.windows.net/staging edge-kubernetes-crd NAME: edge-crd LAST DEPLOYED: Thu Dec 24 21:43:12 2020 NAMESPACE: default STATUS: deployed REVISION: 1 TEST SUITE: None kubectl get crd NAME CREATED AT edgedeployments.microsoft.azure.devices.edge 2020-12-24T21:43:13Z
Defining Azure IoT Edge Service in PCEI
To define Azure IoT Edge Service in PCEI, connect to EMCO UI and select "Projects → Add Project":
Select the project you just created (PCEI-AZURE-IOT-1 in the above example), select "Add Service", specify the Name and click on "Add App":
Click on Add App tp specify the App Name.
IMPORTANT NOTE: Please ensure that the "App Name" string matches the name of the tar file (without the .tar extension" created earlier with the Helm charts for Azure IoT Edge ("azureiotedge1" in this example".
Click "Create".
You should see the screen below:
Click on the "azureiotedge1" Service and attach application definition files. Add App file "azureiotedge1.tar" and profile file "profile.tar.gz". DO NOT CLICK "SUBMIT".
In order to select the tar file please use the "Options" button on the Mac and select "All files":
Add the App tar file and the Profile tar file
Select the "Placement" tab on the left.
Select the "EDGE-K8S-1" cluster that was registered earlier:
Click "SUBMIT" in the upper right corner:
After clicking "SUBMIT" you should see the screen below:
Deploying Azure IoT Edge PCE App on Edge Cluster
To deploy Azure IoT Edge App onto the Edge K8S Cluster (EDGE-K8S-1 in this example), select "Deployment Intent Groups" tab on the left side of the previous screen:
Click on the Blue Down Arrow on the right to deploy Azure IoT Edge App:
After successful deployment, you should see a message in GREEN stating that the deployment has been successful.
SSH to the EDGE-K8S-1 VM and verify the Azure IoT Edge pods started:
ssh onaplab@10.121.7.152 # Verify Azure IoT Edge pods are Running in the default namespace kubectl get pods NAME READY STATUS RESTARTS AGE edgeagent-59cf45d8b9-tc5g9 2/2 Running 1 2m8s edgehub-97dc4fdc8-t5qhf 2/2 Running 0 110s iotedged-6d9dcf4757-h474r 1/1 Running 0 2m17s loraread-d4d79b867-2ft2v 2/2 Running 0 110s # Verify services. Note the TCP port for the loraread-xxxxx-yyyy pod (31230 in the example below): kubectl get svc NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE awsggc-service NodePort 10.244.1.182 <none> 8883:30883/TCP 9d edgehub LoadBalancer 10.244.12.125 <pending> 5671:30252/TCP,8883:31342/TCP,443:30902/TCP 3m iotedged LoadBalancer 10.244.36.143 <pending> 35000:32275/TCP,35001:32560/TCP 32d kubernetes ClusterIP 10.244.0.1 <none> 443/TCP 32d loraread LoadBalancer 10.244.3.167 <pending> 50005:31230/TCP
Verifying Azure IoT Edge End-to-End Operation
To verify Azure IoT Edge end-to-end operation, perform the following tasks:
- Note the EDGE-K8S-1 Cluster IP and the service port for the loraread service:
On the Host Server list the IP address for the edge_k8s-1 VM:
sudo virsh domifaddr edge_k8s-1 Name MAC address Protocol Address ------------------------------------------------------------------------------- vnet1 52:54:00:19:96:72 ipv4 10.121.7.152/27 ssh onaplab@10.121.7.152 kubectl get svc loraread NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE loraread LoadBalancer 10.244.3.167 <pending> 50005:31230/TCP 8m28s onaplab@localhost:~$ onaplab@localhost:~$ logout Connection to 10.121.7.152 closed.
- Start the simulated IoT Client. This can be done directly on your laptop (for convenience) or the python script for the IoT Client - STM32SimAzureEMCO.py - can be copied to a RaspberryPi device.
#Clone PCEI repo to a local directory: git clone "https://gerrit.akraino.org/r/pcei" cd pcei/iotclient/ ls -l total 8 -rw-r--r-- 1 oberzin 108493823 3230 Dec 26 16:15 STM32SimAzureEMCO.py # Run the LPWA IoT Client. Specify the IP address (be sure to enclose the IP address in double quotes) of the edge_k8s-1 VM and the port number for the loraread service: python2 STM32SimAzureEMCO.py ENTER SERVER IPv4: "10.121.7.152" ENTER SERVER PORT: 31230 31230 SENDING... 2020-12-26T16:20:47-99 d2 62 21 ######## COUNT: 1 {u'txtime': u'2020-12-26T16:20:47-99', u'datarate': 3, u'ack': u'false', u'seqno': 60782, u'pdu': u'007321E7016700d2026862', u'devClass': u'A', u'snr': 10.75, u'devEui': u'0004A30B001BAAAA', u'rssi': -39, u'gwEui': u'00250C00010003A9', u'joinId': 90, u'freq': 903.5, u'port': 3, u'channel': 6} CLOSED SEND RESULT: None NEXT INTERVAL 2020-12-26T16:20:58-25 dc 62 21 ######## COUNT: 2 {u'txtime': u'2020-12-26T16:20:58-25', u'datarate': 3, u'ack': u'false', u'seqno': 60782, u'pdu': u'007321E7016700dc026862', u'devClass': u'A', u'snr': 10.75, u'devEui': u'0004A30B001BAAAA', u'rssi': -39, u'gwEui': u'00250C00010003A9', u'joinId': 90, u'freq': 903.5, u'port': 3, u'channel': 6} CLOSED SEND RESULT: None
Note that the LPWA IoT Client is generating Temperature, Humidity and Pressure readings in the encoded format: u'pdu': u'007321E7016700d2026862'.
On the EGGE-K8S-1 cluster (edge_k8s-1 VM) veryfy that the Azure IoT Edge LoRaRead pod is receiving LPWA IoT messages and decoding their contents:
ssh onaplab@10.121.7.152 kubectl get pods NAME READY STATUS RESTARTS AGE edgeagent-59cf45d8b9-tc5g9 2/2 Running 1 26m edgehub-97dc4fdc8-t5qhf 2/2 Running 0 26m iotedged-6d9dcf4757-h474r 1/1 Running 0 26m loraread-d4d79b867-2ft2v 2/2 Running 0 26m kubectl logs loraread-d4d79b867-2ft2v loraread Listening ('Connection address:', ('10.244.64.1', 7117)) ('received data:', '{\n "ack": "false", \n "channel": 6, \n "datarate": 3, \n "devClass": "A", \n "devEui": "0004A30B001BAAAA", \n "freq": 903.5, \n "gwEui": "00250C00010003A9", \n "joinId": 90, \n "pdu": "007321E7016700d2026862", \n "port": 3, \n "rssi": -39, \n "seqno": 60782, \n "snr": 10.75, \n "txtime": "2020-12-26T16:20:47-99"\n}') {u'txtime': u'2020-12-26T16:20:47-99', u'datarate': 3, u'ack': u'false', u'seqno': 60782, u'pdu': u'007321E7016700d2026862', u'devClass': u'A', u'snr': 10.75, u'devEui': u'0004A30B001BAAAA', u'rssi': -39, u'gwEui': u'00250C00010003A9', u'joinId': 90, u'freq': 903.5, u'port': 3, u'channel': 6} 007321E7016700d2026862 00d2 62 21E7 {"Pressure": 867, "TIMESTAMP": "2020-12-26T16:20:47-99", "Humidity": 49, "Temperature": 69.80000000000001, "Device EUI": "0004A30B001BAAAA"} sent! Listening Confirmation[0] received for message with result = OK Properties: {} Total calls confirmed: 1 ('Connection address:', ('10.244.64.1', 24020)) ('received data:', '{\n "ack": "false", \n "channel": 6, \n "datarate": 3, \n "devClass": "A", \n "devEui": "0004A30B001BAAAA", \n "freq": 903.5, \n "gwEui": "00250C00010003A9", \n "joinId": 90, \n "pdu": "007321E7016700dc026862", \n "port": 3, \n "rssi": -39, \n "seqno": 60782, \n "snr": 10.75, \n "txtime": "2020-12-26T16:20:58-25"\n}') {u'txtime': u'2020-12-26T16:20:58-25', u'datarate': 3, u'ack': u'false', u'seqno': 60782, u'pdu': u'007321E7016700dc026862', u'devClass': u'A', u'snr': 10.75, u'devEui': u'0004A30B001BAAAA', u'rssi': -39, u'gwEui': u'00250C00010003A9', u'joinId': 90, u'freq': 903.5, u'port': 3, u'channel': 6} 007321E7016700dc026862 00dc 62 21E7 {"Pressure": 867, "TIMESTAMP": "2020-12-26T16:20:58-25", "Humidity": 49, "Temperature": 71.6, "Device EUI": "0004A30B001BAAAA"} sent! Listening Confirmation[0] received for message with result = OK Properties: {} Total calls confirmed: 2
Note that the Azure IoT Edge PCE App is decoding the IoT Client readings from the Low Power encoding into clear text JSON format and forwarding the decoded readings to the Azure IoT Hub in the core cloud:
{"Pressure": 867, "TIMESTAMP": "2020-12-26T16:20:58-25", "Humidity": 49, "Temperature": 71.6, "Device EUI": "0004A30B001BAAAA"} sent!
Verify that the IoT message count is increasing in Azure Portal for the IoT Edge:
Deploying AWS GreenGrass Core with PCEI
The process of deploying AWS GreenGrass Core with PCEI is similar to the process described for Azure IoT Edge.
- Provision AWS Cloud (PCC).
- Provision Greengrass Group.
- Provision Greengrass Core.
- Package AWS GreenGrass Core application.
- Pull GGC Docker Image from AWS.
- Push GGC Docker Image to PCEI Docker Registry.
- Download Helm charts.
- Modify template files with AWS GGC image and authentication parameters.
- Package Helm charts into a tar file.
- Define AWS GGC Service and PCE App in EMCO.
- Deploy AWS GGC onto Edge K8S Cluster using EMCO.
Provisioning AWS Public Cloud Core (PCC) IoT Environment
Login to AWS Console and select AWS IoT service.
Select "Greengrass" on the left hand side, select "Classic (V1)":
Create a Group by clicking on "Create a Group":
Select "Use default creation" and specify the Group Name:
Confirm the "Core Function" and create the Group and Core:
Download the Core Security Resources tar file to your local directory:
Next, chose a root CA by clicking the button and right clicking on "Amazon Root CA" link on the next page. Select "Save Link As" and save the file in your local directory
At this point your AWS Greengrass Group and Core have been provisioned.
Packaging AWS GGC Public Cloud Edge (PCE) Application
Prepare Edge Cluster and Download AWS GGC Docker Image
Perform the following tasks on the edge_k8s-2 VM/Cluster. For the purposes of this guide, a local Docker registry is deployed on the edge cluster. Any other registry can be used.
# SSH to the EMCO Cluster (use the ssh key is ssh-ing from you laptop: ssh -i ~/.ssh/pcei-emco onaplab@10.121.7.146 ## Install AWS CLI on EMCO cluster curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip" unzip awscliv2.zip sudo ./aws/install ## Configure AWS auth - supply Access Key and Secret Access Key: aws configure Access Key ID: XXXXXXX Secret Access Key: YYYYYYY ## Pull GGC docker image from AWS ACR awspass=`sudo aws ecr get-login-password --region us-west-2` sudo docker login --username AWS --password $awspass https://216483018798.dkr.ecr.us-west-2.amazonaws.com sudo docker pull 216483018798.dkr.ecr.us-west-2.amazonaws.com/aws-iot-greengrass:latest ### Start local docker repo on worker cluster sudo docker run -d -p 5000:5000 --restart=always --name registry registry:2 ## Tag AWS GGC docker image sudo docker tag 216483018798.dkr.ecr.us-west-2.amazonaws.com/aws-iot-greengrass localhost:5000/aws-iot-greengrass ## Push AWS GGC docker image to local registry sudo docker push localhost:5000/aws-iot-greengrass
Prepare and Package AWS GGC Helm Charts
# Clone PCEI repo to your local directory git clone "https://gerrit.akraino.org/r/pcei" cd pcei mkdir awsggc1 cp -a awsggc/. awsggc1/ cd awsggc1 ls -al total 16 -rw-r--r-- 1 oberzin 108493823 116 Nov 23 10:55 Chart.yaml drwxr-xr-x 9 oberzin 108493823 306 Nov 24 23:10 templates -rw-r--r-- 1 oberzin 108493823 376 Nov 24 13:32 values.yaml # Modify template files: cd templates/ (base) USMBB6G8WL-3:templates oberzin$ ls -l total 56 -rw-r--r-- 1 oberzin 108493823 1042 Nov 23 10:55 _helpers.tpl -rw-r--r-- 1 oberzin 108493823 1443 Nov 24 22:37 awsggc-cert.yaml -rw-r--r-- 1 oberzin 108493823 1939 Nov 24 22:34 awsggc-privkey.yaml -rw-r--r-- 1 oberzin 108493823 1405 Nov 24 22:22 awsggc-rootca.yaml -rw-r--r-- 1 oberzin 108493823 1086 Nov 24 22:30 configmap.yaml -rw-r--r-- 1 oberzin 108493823 1701 Nov 24 23:10 deployment.yaml -rw-r--r-- 1 oberzin 108493823 407 Nov 23 10:55 service.yaml
# Modify config.yaml file. # Update the "thingArn", "iotHost" and "ggHost" valuses based on the config.json file from your GGC configuration. # LEAVE ALL OTHER LINES UNCHANGED. vi configmap.yaml apiVersion: v1 kind: ConfigMap metadata: name: {{ include "awsggc.name" .}}-configmap data: config.json: |- { "coreThing" : { "caPath" : "root.ca.pem", "certPath" : "cert.pem", "keyPath" : "private.key", "thingArn" : "arn:aws:iot:us-west-2:XXXXX", "iotHost" : "XXXXX-ats.iot.us-west-2.amazonaws.com", "ggHost" : "greengrass-ats.iot.us-west-2.amazonaws.com", "keepAlive" : 600 }, "runtime" : { "cgroup" : { "useSystemd" : "yes" } }, "managedRespawn" : false, "crypto" : { "principals" : { "SecretsManager" : { "privateKeyPath" : "file:///greengrass/keys/private.key" }, "IoTCertificate" : { "privateKeyPath" : "file:///greengrass/keys/private.key", "certificatePath" : "file:///greengrass/certs/cert.pem" } }, "caPath" : "file:///greengrass/ca/root.ca.pem" } }
# Update awsggc-cert.yaml file # Paste the contents of "<awsggcid>-setup/cert/<awsggcid>-cert.pem" file # into the awsggc-cert.yaml file # Be sure to maintan indentation as shown in the example below: vi awsggc-cert.yaml apiVersion: v1 kind: ConfigMap metadata: # name: {{ include "awsggc.name" .}}-configmap name: awsggc-cert data: cert.pem: |- -----BEGIN CERTIFICATE----- Paste cert here -----END CERTIFICATE----- # Update awsggc-privkey.yaml file # Paste the contents of "<awsggcid>-setup/cert/<awsggcid>-private.key" file # into the awsggc-privkey.yaml file # Be sure to maintan indentation as shown in the example below: vi awsggc-privkey.yaml apiVersion: v1 kind: ConfigMap metadata: # name: {{ include "awsggc.name" .}}-configmap name: awsggc-privkey data: private.key: |- -----BEGIN RSA PRIVATE KEY----- Paste key here -----END RSA PRIVATE KEY----- # Update awsggc-rootca.yaml file # Paste the contents of "AmazonRootCA1.pem" file # into the awsggc-rootca.yaml file # Be sure to maintan indentation as shown in the example below: vi awsggc-rootca.yaml apiVersion: v1 kind: ConfigMap metadata: # name: {{ include "awsggc.name" .}}-configmap name: awsggc-rootca data: root.ca.pem: |- -----BEGIN CERTIFICATE----- MIIDQTCCAimgAwIBAgITBmyfz5m/jAo54vB4ikPmljZbyjANBgkqhkiG9w0BAQsF ADA5MQswCQYDVQQGEwJVUzEPMA0GA1UEChMGQW1hem9uMRkwFwYDVQQDExBBbWF6 b24gUm9vdCBDQSAxMB4XDTE1MDUyNjAwMDAwMFoXDTM4MDExNzAwMDAwMFowOTEL MAkGA1UEBhMCVVMxDzANBgNVBAoTBkFtYXpvbjEZMBcGA1UEAxMQQW1hem9uIFJv b3QgQ0EgMTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBALJ4gHHKeNXj ca9HgFB0fW7Y14h29Jlo91ghYPl0hAEvrAIthtOgQ3pOsqTQNroBvo3bSMgHFzZM 9O6II8c+6zf1tRn4SWiw3te5djgdYZ6k/oI2peVKVuRF4fn9tBb6dNqcmzU5L/qw IFAGbHrQgLKm+a/sRxmPUDgH3KKHOVj4utWp+UhnMJbulHheb4mjUcAwhmahRWa6 VOujw5H5SNz/0egwLX0tdHA114gk957EWW67c4cX8jJGKLhD+rcdqsq08p8kDi1L 93FcXmn/6pUCyziKrlA4b9v7LWIbxcceVOF34GfID5yHI9Y/QCB/IIDEgEw+OyQm jgSubJrIqg0CAwEAAaNCMEAwDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMC AYYwHQYDVR0OBBYEFIQYzIU07LwMlJQuCFmcx7IQTgoIMA0GCSqGSIb3DQEBCwUA A4IBAQCY8jdaQZChGsV2USggNiMOruYou6r4lK5IpDB/G/wkjUu0yKGX9rbxenDI U5PMCCjjmCXPI6T53iHTfIUJrU6adTrCC2qJeHZERxhlbI1Bjjt/msv0tadQ1wUs N+gDS63pYaACbvXy8MWy7Vu33PqUXHeeE6V/Uq2V8viTO96LXFvKWlJbYK8U90vv o/ufQJVtMVT8QtPHRh8jrdkPSHCa2XV4cdFyQzR1bldZwgJcJmApzyMZFo6IQ6XU 5MsI+yMRQ+hDKXJioaldXgjUkK642M4UwtBV8ob2xJNDd2ZhwLnoQdeXeGADbkpy rqXRfboQnoZsG4q5WTP468SQvvG5 -----END CERTIFICATE-----
Create a tar file with Helm charts for AWS Grrengrass Core App:
# Change to the "pcei" directory: cd ../.. # Create the tar file tar -czvf awsggc1.tar awsggc1/ awsggc1 awsggc1/Chart.yaml awsggc1/.helmignore awsggc1/templates awsggc1/values.yaml awsggc1/templates/deployment.yaml awsggc1/templates/service.yaml awsggc1/templates/awsggc-rootca.yaml awsggc1/templates/configmap.yaml awsggc1/templates/_helpers.tpl awsggc1/templates/awsggc-privkey.yaml awsggc1/templates/awsggc-cert.yaml
Defining AWS GGC Service in PCEI
Access EMCO UI → Projects → Create Project:
Select the just created Project - "PCEI-AWSGGC-IOT-1" in this example and click "Add Service":
Click on "+ Add App" and add the "awsggc1" app. Make sure to use the "awsggc1" name to match the app tar file name without the extension:
Define the AWS GGC app by adding the App tar filr and the Profile tar file:
Select "Placement" on the left and select the EDGE-K8S-2" cluster:
Click "SUBMIT" in the upper right cornet.
Deploying AWS GGC PCE App on Edge Cluster
Go to "Deployment Intent Groups"on the left and deploy the AWS GGC App by clicking on the blue down-arrow:
You should see the message in GREEN below:
Verifying AWS GGC End-to-End Operation
Connect to the EDGE-K8S-2 cluster (edge_k8s-2 VM):
ssh onaplab@10.121.7.146 # Verify that the AWS GGC pod is Running in the default namesopace kubectl get pods NAME READY STATUS RESTARTS AGE v1-awsggc-5c84b4ccf-vqn5x 1/1 Running 0 3m34s # Identify the AWS GGC Docker container: onaplab@localhost:~$ sudo docker ps |grep awsggc e93b85bbbf04 216483018798.dkr.ecr.us-west-2.amazonaws.com/aws-iot-greengrass "/bin/bash" 4 minutes ago Up 4 minutes k8s_awsggc_v1-awsggc-5c84b4ccf-vqn5x_default_5dfb86a9-fdd2-479c-9852-3341f9b002b0_0 # Connect to the AWS GGC container: sudo docker exec -it e93b85bbbf04 /bin/bash bash-4.2# # Examine the greengrass core logs: bash-4.2# cd /greengrass/ggc/var/log/system/ bash-4.2# ls -l total 12 drwx------ 2 root root 4096 Dec 30 01:47 localwatch -rw------- 1 root root 8015 Dec 30 01:47 runtime.log cat runtime.log bash-4.2# cat runtime.log [2020-12-30T01:47:50.015Z][INFO]-=========================================== [2020-12-30T01:47:50.015Z][INFO]-Greengrass Version: 1.11.0-RC2 [2020-12-30T01:47:50.015Z][INFO]-Greengrass Root: /greengrass [2020-12-30T01:47:50.015Z][INFO]-Greengrass Write Directory: /greengrass/ggc [2020-12-30T01:47:50.015Z][INFO]-Group File Directory: /greengrass/ggc/deployment/group [2020-12-30T01:47:50.016Z][INFO]-Default Lambda UID: 999 [2020-12-30T01:47:50.016Z][INFO]-Default Lambda GID: 997 [2020-12-30T01:47:50.016Z][DEBUG]-Go version: go1.12.11 [2020-12-30T01:47:50.016Z][DEBUG]-CoreThing Connection Config: { "Region": "us-west-2", "ThingArn": "arn:aws:iot:us-west-2:XXXXX", "IoTMQTTEndpoint": "XXXXX-ats.iot.us-west-2.amazonaws.com:8883", "IoTHTTPEndpoint": "XXXXX-ats.iot.us-west-2.amazonaws.com:8443", "GGMQTTPort": 8883, "GGHTTPEndpoint": "greengrass-ats.iot.us-west-2.amazonaws.com:8443", "GGDaemonPort": 8000, "GGMQTTKeepAlive": 600, "GGMQTTMaxConnectionRetryInterval": 60, "GGMQTTConnectTimeout": 30, "GGMQTTPingTimeout": 30, "GGMQTTOperationTimeout": 5, "GGHTTPTimeout": 60, "FIPSMode": false, "CoreClientId": "" } [2020-12-30T01:47:50.016Z][DEBUG]-System Config: { "tmpDirectory": "", "shadowSyncTimeout": 0, "useOverlayWithTmpfs": false, "disablePivotRoot": false } [2020-12-30T01:47:50.016Z][DEBUG]-Runtime Config: { "maxWorkItemCount": 1024, "schedulingFrequency": 1000, "maxConcurrentLimit": 25, "lruSize": 25, "cgroup": { "useSystemd": true, "mountPoint": null }, "postStartHealthCheckTimeout": 60000, "allowFunctionsToRunAsRoot": false, "onSystemComponentsFailure": 0, "systemComponentAuthTimeout": 5000, "mountAllBlockDevices": false } [2020-12-30T01:47:50.016Z][INFO]-=========================================== [2020-12-30T01:47:50.016Z][DEBUG]-[3]Requested certificate load [file:///greengrass/certs/cert.pem] with error: [<nil>] [2020-12-30T01:47:50.016Z][INFO]-The current core is using the AWS IoT certificates with fingerprint. {"fingerprint": "10f8f09c63075139b8daff9fcbd1ff8d221cb505f421895171ea2b4c85231b82"} [2020-12-30T01:47:50.016Z][INFO]-Will persist worker process info. {"dir": "/greengrass/ggc/packages/1.11.0/var/worker/processes"} [2020-12-30T01:47:50.017Z][INFO]-Will persist worker process info. {"dir": "/greengrass/ggc/packages/1.11.0/var/worker/processes"} [2020-12-30T01:47:50.017Z][DEBUG]-loading subscriptions {"trie": "map[]"} [2020-12-30T01:47:50.017Z][INFO]-No proxy URL found. [2020-12-30T01:47:50.018Z][DEBUG]-[3]Requested certificate load [file:///greengrass/ca/root.ca.pem] with error: [<nil>] [2020-12-30T01:47:50.018Z][DEBUG]-[3]Requested key load [file:///greengrass/keys/private.key] with error: [<nil>] [2020-12-30T01:47:50.018Z][DEBUG]-[3]Requested certificate load [file:///greengrass/certs/cert.pem] with error: [<nil>] [2020-12-30T01:47:50.018Z][INFO]-No proxy URL found. [2020-12-30T01:47:50.021Z][INFO]-Connecting with MQTT. {"endpoint": "a1hd4mq2lxwoaa-ats.iot.us-west-2.amazonaws.com:8883", "clientId": "PCEI_Core1"} [2020-12-30T01:47:50.021Z][DEBUG]-MQTT connection attempt. {"attemptId": "tcbM", "clientId": "PCEI_Core1"} [2020-12-30T01:47:50.021Z][DEBUG]-New MQTT connection attempt [2020-12-30T01:47:50.021Z][DEBUG]-Acquired lock for connection attempt [2020-12-30T01:47:50.021Z][DEBUG]-Disconnect client {"force": false} [2020-12-30T01:47:50.022Z][DEBUG]-Reloading function registry. [2020-12-30T01:47:50.022Z][DEBUG]-[3]Requested certificate load [file:///greengrass/certs/cert.pem] with error: [<nil>] [2020-12-30T01:47:50.022Z][INFO]-The current core is using the AWS IoT certificates with fingerprint. {"fingerprint": "10f8f09c63075139b8daff9fcbd1ff8d221cb505f421895171ea2b4c85231b82"} [2020-12-30T01:47:50.212Z][DEBUG]-Connection request is valid [2020-12-30T01:47:50.212Z][DEBUG]-Finished connection attempt, waiting for OnConnect Handler [2020-12-30T01:47:50.212Z][DEBUG]-Releasing lock for connection attempt [2020-12-30T01:47:50.212Z][INFO]-MQTT connection successful. {"attemptId": "tcbM", "clientId": "PCEI_Core1"} [2020-12-30T01:47:50.212Z][INFO]-MQTT connection established. {"endpoint": "a1hd4mq2lxwoaa-ats.iot.us-west-2.amazonaws.com:8883", "clientId": "PCEI_Core1"} [2020-12-30T01:47:50.212Z][DEBUG]-Handle new connection event [2020-12-30T01:47:50.212Z][DEBUG]-Acquired lock for new connection event [2020-12-30T01:47:50.212Z][DEBUG]-Update status to connected [2020-12-30T01:47:50.213Z][DEBUG]-Releasing lock for new connection event [2020-12-30T01:47:50.213Z][DEBUG]-Entering OnConnect. {"clientId": "PCEI_Core1", "count": 1} [2020-12-30T01:47:50.213Z][INFO]-MQTT connection connected. Start subscribing. {"clientId": "PCEI_Core1", "count": 1} [2020-12-30T01:47:50.213Z][INFO]-Daemon connected to cloud. [2020-12-30T01:47:50.213Z][DEBUG]-Subscribe retry configuration. {"IntervalInSeconds": 60, "count": 1} [2020-12-30T01:47:50.213Z][INFO]-Start subscribing. {"numOfTopics": 5, "clientId": "PCEI_Core1"} [2020-12-30T01:47:50.213Z][INFO]-Trying to subscribe to topic $aws/things/PCEI_Core1-gda/shadow/get/accepted [2020-12-30T01:47:50.213Z][DEBUG]-Subscribe {"topic": "$aws/things/PCEI_Core1-gda/shadow/get/accepted", "qos": 0} [2020-12-30T01:47:50.263Z][DEBUG]-Subscribed to topic. {"topic": "$aws/things/PCEI_Core1-gda/shadow/get/accepted"} [2020-12-30T01:47:50.263Z][DEBUG]-Publish {"topic": "$aws/things/PCEI_Core1-gda/shadow/get", "qos": 1} [2020-12-30T01:47:50.289Z][INFO]-Trying to subscribe to topic $aws/things/PCEI_Core1-gda/shadow/update/delta [2020-12-30T01:47:50.289Z][DEBUG]-Subscribe {"topic": "$aws/things/PCEI_Core1-gda/shadow/update/delta", "qos": 0} [2020-12-30T01:47:50.373Z][DEBUG]-Subscribed to topic. {"topic": "$aws/things/PCEI_Core1-gda/shadow/update/delta"} [2020-12-30T01:47:50.373Z][INFO]-Trying to subscribe to topic $aws/things/PCEI_Core1-gcf/shadow/get/rejected [2020-12-30T01:47:50.373Z][DEBUG]-Subscribe {"topic": "$aws/things/PCEI_Core1-gcf/shadow/get/rejected", "qos": 0} [2020-12-30T01:47:50.425Z][DEBUG]-Subscribed to topic. {"topic": "$aws/things/PCEI_Core1-gcf/shadow/get/rejected"} [2020-12-30T01:47:50.425Z][INFO]-Trying to subscribe to topic $aws/things/PCEI_Core1-gcf/shadow/get/accepted [2020-12-30T01:47:50.425Z][DEBUG]-Subscribe {"topic": "$aws/things/PCEI_Core1-gcf/shadow/get/accepted", "qos": 0} [2020-12-30T01:47:50.494Z][DEBUG]-Subscribed to topic. {"topic": "$aws/things/PCEI_Core1-gcf/shadow/get/accepted"} [2020-12-30T01:47:50.494Z][DEBUG]-Publish {"topic": "$aws/things/PCEI_Core1-gcf/shadow/get", "qos": 1} [2020-12-30T01:47:50.52Z][INFO]-Trying to subscribe to topic $aws/things/PCEI_Core1-gcf/shadow/update/delta [2020-12-30T01:47:50.52Z][DEBUG]-Subscribe {"topic": "$aws/things/PCEI_Core1-gcf/shadow/update/delta", "qos": 0} [2020-12-30T01:47:50.535Z][INFO]-Updating with update request. {"aggregationIntervalSeconds": 3600, "publishIntervalSeconds": 86400} [2020-12-30T01:47:50.535Z][INFO]-Config update is in pending state. {"aggregationIntervalSeconds": 3600, "publishIntervalSeconds": 86400} [2020-12-30T01:47:50.535Z][INFO]-Start metrics config updating. {"aggregationIntervalSeconds": 3600, "publishIntervalSeconds": 86400} [2020-12-30T01:47:50.535Z][INFO]-Metric config update succeeded. [2020-12-30T01:47:50.536Z][INFO]-Received signal to terminate aggregation schedule [2020-12-30T01:47:50.536Z][INFO]-Received signal to terminate upload schedule [2020-12-30T01:47:50.536Z][DEBUG]-Report config update to the topic {"topic": "$aws/things/PCEI_Core1-gcf/shadow/update", "data": "{\"state\":{\"reported\":{\"telemetryConfiguration\":{\"publishIntervalSeconds\":86400,\"aggregationIntervalSeconds\":3600}}}}"} [2020-12-30T01:47:50.536Z][DEBUG]-Publish {"topic": "$aws/things/PCEI_Core1-gcf/shadow/update", "qos": 1} [2020-12-30T01:47:50.562Z][INFO]-Update metric config reported to the cloud. [2020-12-30T01:47:50.577Z][DEBUG]-Subscribed to topic. {"topic": "$aws/things/PCEI_Core1-gcf/shadow/update/delta"} [2020-12-30T01:47:50.577Z][INFO]-All topics subscribed. {"clientId": "PCEI_Core1"} bash-4.2#
Deploying Location API App with PCEI
The deployment of the Location API App is an example of deploying a 3rd-Party Edge (3PE) App without the Public Cloud Core (PCC) backend/provisioning. The figure below shows the process of deploying the Location API App. Note that the MNO infrastructure and Location Service are shown for example only (the current implementation of the PCEI Location API App does not support intergration with MNO Location Services).
Preparing the Edge Cluster
Clone the PCEI repo and build the Docker image for the Location API App. Perform the follwing tasks on the EDGE-K8S-2 cluster:
ssh onaplab@10.121.7.146 # Clone the PCEI repo git clone "https://gerrit.akraino.org/r/pcei" cd pcei/locationAPI/nodejs # Build the Docker image sudo docker build -f Dockerfile . -t pceilocapi:latest # Push the PCEI Location API image to local Docker repository: sudo docker tag pceilocapi localhost:5000/pceilocapi sudo docker push localhost:5000/pceilocapi
Packaging PCEI Location API App
To package PCEI Location API App, we need to download Helm charts to a local directory on your laptop and create a tar App file:
git clone "https://gerrit.akraino.org/r/pcei" cd pcei mkdir pceilocapi1 cp -a pceilocapihelm/. pceilocapi1/ cd pceilocapi1 ls -l total 16 -rw-r--r-- 1 oberzin staff 120 Dec 29 23:24 Chart.yaml drwxr-xr-x 6 oberzin staff 192 Dec 29 23:34 templates -rw-r--r-- 1 oberzin staff 376 Dec 29 23:34 values.yaml cd .. tar -czvf pceilocapi1.tar pceilocapi1/ a pceilocapi1 a pceilocapi1/Chart.yaml a pceilocapi1/.helmignore a pceilocapi1/templates a pceilocapi1/values.yaml a pceilocapi1/templates/deployment.yaml a pceilocapi1/templates/service.yaml a pceilocapi1/templates/configmap.yaml a pceilocapi1/templates/_helpers.tpl
Defining Location API App in PCEI
Access EMCO UI. Define a Project and a Service for PCEI Location API:
Add PCEI Location Api App:
Associate the App tar file and the Profile tar file with the PCEI Location API App:
Select "Placement" and place the PCEI Location API App onto the "EDGE-K8S-2" cluster:
Click "SUBMIT"
Deploying PCEI Location API App
Select "Deployment Intent Groups":
Click the blue down-arror to deploy the PCEI Location API App:
Verify the PCEI Location API App deployment on the "EDGE-K8S-2" cluster:
# SSH to egde_k8s-1 VM: ssh onaplab@10.121.7.146 # Verify that PCEI Location API App pod is Running kubectl get pods NAME READY STATUS RESTARTS AGE v1-pceilocapi-64477bb5d8-dzjh7 1/1 Running 0 107s onaplab@localhost:~$ # Verify K8S service kubectl get service NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE pceilocapi-service NodePort 10.244.20.128 <none> 8081:30808/TCP 26m # Verify PCEI Location API logs kubectl logs v1-pceilocapi-64477bb5d8-dzjh7 > location-api@1.0.0 prestart /usr/src/app > npm install audited 147 packages in 1.235s 2 packages are looking for funding run `npm fund` for details found 8 vulnerabilities (2 low, 2 moderate, 4 high) run `npm audit fix` to fix them, or `npm audit` for details > location-api@1.0.0 start /usr/src/app > node index.js Your server is listening on port 8081 (http://localhost:8081) Swagger-ui is available on http://localhost:8081/docs # Verify PCEI Location API Docker container sudo docker ps |grep pcei 128842966f27 localhost:5000/pceilocapi "docker-entrypoint.s…" 4 minutes ago Up 4 minutes k8s_pceilocapi_v1-pceilocapi-64477bb5d8-dzjh7_default_7732dd43-4e61-48a7-bc2c-70770895fa6f_0
Verifying PCEI Location API App
Access the PCEI Location API App doc page:
http://<EDGE-K8S-1 VM IP Address>:<pceilocapi pod service port>/docs
http://10.121.7.146:30808/docs