Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 11 Current »

Introduction

The purpose of this test is to demonstrate two scheduling use cases of text sentiment analysis service:

Case 1. Scheduling computing force by cluster weight;

Case 2. Rescheduling computing force when a cluster resource is abnormal.

Akraino Test Group Information

Test Architecture

Test Framework

Hardware:

      Control-panel:   192.168.30.12,192.168.30.21

      Worker-Cluster1: 192.168.30.5 、192.168.30.22、192.168.30.20

      Worker-Cluster2: 192.168.30.2、192.168.30.16、192.168.30.25

Software:

     Karmada: Open, Multi-Cloud, Multi-Cluster Kubernetes Orchestration

     Kubernetes: an open-source system for automating deployment, scaling, and management of containerized applications.

     sentiment: an text emotion analysis service

Test description

Case 1. Scheduling by weight

1.Create a deployment.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: sentiment

  labels:

    app: sentiment

spec:

  replicas: 2

  selector:

    matchLabels:

      app: sentiment

  template:

    metadata:

      labels:

        app: sentiment

    spec:

      imagePullSecrets:

      - name: harborsecret

      containers:

      - name: sentiment

        image: 192.168.30.20:5000/migu/sentiment:latest

        imagePullPolicy: IfNotPresent

        ports:

        - containerPort: 9600

          protocol: TCP

          name: http

        resources:

          limits:

            cpu: 2

            memory: 4G

          requests:

            cpu: 2

            memory: 4G

2.Create nginx deployment yaml file.

Create a deployment and name it sentiment. Execute commands as follow:

kubectl --kubeconfig /etc/karmada/karmada-apiserver.config create -f deployment.yaml

3. Create a distribution yaml file,  PropagationPolicy.yaml:

apiVersion: policy.karmada.io/v1alpha1

kind: PropagationPolicy

metadata:

  name: sentiment-propagation

spec:

  resourceSelectors:

    - apiVersion: apps/v1

      kind: Deployment

      name: sentiment

  placement:

    clusterAffinity:

      clusterNames:

        - member1

        - member2

    replicaScheduling:

      replicaDivisionPreference: Weighted

      replicaSchedulingType: Divided

      weightPreference:

        staticWeightList:

          - targetCluster:

              clusterNames:

                - member1

            weight: 1

          - targetCluster:

              clusterNames:

                - member2

            weight: 1

4.Create PropagationPolicy that will distribute sentiment to worker cluster
 We need to create a policy to distribute the deployment to our worker cluster. Execute commands as follow:

kubectl --kubeconfig /etc/karmada/karmada-apiserver.config create -f propagationpolicy.yaml

5.Check the deployment status
We can check deployment status, don't need to access worker cluster.  Execute commands as follow:

In worker cluseter,we can see the result as follow:

6.Next, we will change deployment.yaml and propagationpolicy.yaml , then retry.

apiVersion: apps/v1

kind: Deployment

metadata:

  name: sentiment

  labels:

    app: sentiment

spec:

  replicas: 4

  selector:

    matchLabels:

      app: sentiment

  template:

    metadata:

      labels:

        app: sentiment

    spec:

      imagePullSecrets:

      - name: harborsecret

      containers:

      - name: sentiment

        image: 192.168.30.20:5000/migu/sentiment:latest

        imagePullPolicy: IfNotPresent

        ports:

        - containerPort: 9600

          protocol: TCP

          name: http

        resources:

          limits:

            cpu: 2

            memory: 4G

          requests:

            cpu: 2

            memory: 4G

Execute command as follow:

kubectl --kubeconfig /etc/karmada/karmada-apiserver.config apply -f deployment.yaml

vi propagationpolicy.yaml

apiVersion: policy.karmada.io/v1alpha1

kind: PropagationPolicy

metadata:

  name: sentiment-propagation

spec:

  resourceSelectors:

    - apiVersion: apps/v1

      kind: Deployment

      name: sentiment

  placement:

    clusterAffinity:

      clusterNames:

        - member1

        - member2

    replicaScheduling:

      replicaDivisionPreference: Weighted

      replicaSchedulingType: Divided

      weightPreference:

        staticWeightList:

          - targetCluster:

              clusterNames:

                - member1

            weight: 1

          - targetCluster:

              clusterNames:

                - member2

            weight: 3

Execute commands as follow:

kubectl --kubeconfig /etc/karmada/karmada-apiserver.config apply -f propagationpolicy.yaml

7.Retry, Check the deployment status
We can check deployment status, don't need to access member cluster.  Execute commands as follow:

In worker cluseter,we can see the result as follow:

Case 2. Rescheduling

1.First we create a deployment with 2 replicas and divide them into 2 worker clusters.

apiVersion: policy.karmada.io/v1alpha1

kind: PropagationPolicy

metadata:

  name: sentiment-propagation

spec:

  resourceSelectors:

    - apiVersion: apps/v1

      kind: Deployment

      name: sentiment

  placement:

    clusterAffinity:

      clusterNames:

        - member1

        - member2

    replicaScheduling:

      replicaDivisionPreference: Weighted

      replicaSchedulingType: Divided

      weightPreference:

        dynamicWeight: AvailableReplicas

---

apiVersion: apps/v1

kind: Deployment

metadata:

  name: sentiment

  labels:

    app: sentiment

  namespace: migu

spec:

  replicas: 2

  selector:

    matchLabels:

      app: sentiment

  template:

    metadata:

      labels:

        app: sentiment

    spec:

      imagePullSecrets:

      - name: harborsecret

      containers:

      - name: sentiment

        image: 192.168.30.20:5000/migu/sentiment:latest

        imagePullPolicy: IfNotPresent

        ports:

        - containerPort: 9600

          protocol: TCP

          name: http

        resources:

          limits:

            cpu: 2

            memory: 4G

          requests:

            cpu: 2

            memory: 4G


It is possible for these 2 replicas to be evenly divided into 2 worker clusters, that is, one replica in each cluster.

2.Now we taint all nodes in worker1 and evict the replica.

$ kubectl --context worker1 cordon control-plane

# delete the pod in cluster worker1

$ kubectl --context worker1 delete pod -l app=sentiment


A new pod will be created and cannot be scheduled by kube-scheduler due to lack of resources.

# the state of pod in cluster worker1 is pending

$ kubectl --context worker1 get pod

NAME                          READY   STATUS    RESTARTS   AGE

sentiment-6fd4c7867c-jkcqn    1/1     Pending   0          80s


3.After about 5 to 7 minutes, the pod in worker1 will be evicted and scheduled to other available clusters.

# get the pod in cluster worker1

$ kubectl --context worker1 get pod

No resources found in default namespace.

# get a list of pods in cluster worker2

$ kubectl --context worker2 get pod

NAME                         READY   STATUS    RESTARTS   AGE

sentiment-6fd4c7867c-hvzfd   1/1     Running   0          6m3s

sentiment-6fd4c7867c-vrmnm   1/1     Running   0          4s




Test Dashboards

N/A


Additional Testing

N/A

Bottlenecks/Errata

N/A

  • No labels