Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

  • What do the CRD controllers do? Define the exact responsibilities of model & dataset CRDs and controllers.
  • How will the higher level tasks, i.e. federated learning, model serving etc, utilize the services provided by model & dataset CRDs. 
  • Cloud edge communication mechanism for the CRD controllers: do they share the existing port 10000, or use a new port exclusively for AI purpose? Related: how do cloud workers and edge workers communicate? Cloud workers can be scheduled in cloud worker nodes, which means they can be deployed as a K8s service and have an publicly routable endpoint. Can KubeEdge operate in hybrid mode, i.e. having both cloud worker nodes and edge nodes?

Use Cases

Model serving

This is the simplest case. Upon creating a model CRD object, the edge part of the model controller should get notified and prepare the local workspace for the new model. By specifying the target model version to pull, the controller will download the corresponding model files (the whole directory can be compressed into a tarball) from the provided URL endpoint. 

Federated learning

Upon creating a model CRD object, edge needs to download the training scripts (running on edge) and initial weights files from provided URL endpoint. Once the gradients have been calculated, model gradients should be synced to 

Design Details