SCHEDULE AT-A-GLANCE
DAY1.MondayWednesday,April 29May 1 | |
---|---|
2 hour on-site discussion |
Day2. Tuesday, April 30 (APAC time zone friendly)
21:00 – 23:10 EDT (UTC-4)
03:00 – 05:10 CEST (UTC+2) (Friday)
09:00 – 11:10 CST (UTC+8) (Friday)
Day3. Wednesday, May 1 (APAC time zone friendly)
*Reserve day
21:00 – 23:10 EDT (UTC-4)
03:00 – 05:10 CEST (UTC+2) (Friday)
09:00 – 11:10 CST (UTC+8) (Friday)
Day2.
Tuesday, April 30 (APAC time zone friendly)
Introduction to Akraino activities in 2023, Collaboration with other open communities
Zoom Link: TBD
Recording: TBD
Welcome note
Yin Ding TSC Chair
Haruhisa Fukano TSC Co-Chair
19:40-20:10
Wednesday, May 1 (APAC time zone friendly)
Introduction to Akraino activities in 2023, Collaboration with other open communitiesDay1.
Wednesday, May 1
Zoom Link: TBD
Recording: TBD
Time(UTC-7) | Topics |
---|---|
18:00-18:05 | Welcome note |
18:10-18:40 | |
18:40-19:10 | |
19:10-19:40 | |
19:40-20:10 | |
Closing |
Call for proposal
No | Name | Company | Presentation title | Abstract | Preferred Time Zone | Comments | |
---|---|---|---|---|---|---|---|
1 | Jeff Brower | Signalogic | jbrower at signalogic dot com | Small Language Model for Device AI Applications | Device AI applications running at the AI Edge on very small form-factor devices (for example pico ITX), and without an online cloud connection, need to perform automatic speech recognition (ASR) under difficult conditions, including background noise, urgent or stressed voice input, and other talkers in the background. For robotics applications, background noise may also include servo motor and other mechanical noise. Under these conditions, efficient open source ASRs such as Kaldi and Whisper tend to produce "sound-alike" errors, for example: in the early days a king rolled the stake To address this issue, Signalogic is developing a Small Language Model (SLM) to correct sound-alike errors, capable of running in a very small form-factor and under 10W, for example using two (2) Atom CPU cores. The SLM must run every 1/2 second and with a backwards/forwards context of 3-4 words. Unlike an LLM, a wide context window, domain knowledge, and extensive web page training are not needed. | PDT | |
2 | |||||||
3 | |||||||
4 | |||||||
5 | |||||||
6 | |||||||
7 | |||||||
8 | |||||||
9 | |||||||
10 | |||||||